
513

Actor-Agent Application for Train Driver Rescheduling

Erwin J.W. Abbinkb David G.A. Mobacha Pieter J. Fiooleb Leo G. Kroonb,c

Eddy H.T. van der Heijdena Niek J.E. Wijngaardsa

aD-CIS Lab
Thales Research & Technology NL

P.O. Box 90, 2600 AB
Delft

bNetherlands Railways
NSR Logistics Innovation
P.O. Box 2025, 3500 HA

Utrecht

cRotterdam School of Management
Erasmus University Rotterdam

P.O. Box 1738, 3000 DR
Rotterdam

{erwin.abbink,pieterjan.fioole,leo.kroon}@ns.nl, {david.mobach,eddy.vanderheijden,niek.wijngaards}@icis.decis.nl

ABSTRACT
This paper describes the design, implementation, visualizations,
results and lessons learned of a novel real-world socio-technical
research system for the purpose of rescheduling train drivers in
the event of disruptions. The research system is structured
according to the Actor-Agent paradigm: here agents assist in
rescheduling tasks of train drivers. Coordination between agents is
based on a team formation process in which possible rescheduling
alternatives can be evaluated, based on constraints and
preferences of involved human train drivers and dispatchers. The
research system is the result of cooperation on decentralised
multi-agent crew rescheduling between Netherlands Railways
(NS) and the D-CIS Lab. The implementation is realized using the
Cougaar framework and includes actual timetable and rolling
stock schedule data and driver duty data.

Categories and Subject Descriptors
J.m [COMPUTER APPLICATIONS]: Miscellaneous –
transportation; I.2.1 [ARTIFICIAL INTELLIGENCE]:
Applications and Expert Systems – actor-agent systems; I.2.11
[ARTIFICIAL INTELLIGENCE]: Distributed Artificial
Intelligence – multi-agent systems; I.2.8 [ARTIFICIAL
INTELLIGENCE]: Problem Solving, Control Methods, and
Search – scheduling.

General Terms
Performance, Design, Experimentation, Economics.

Keywords
Distributed Systems, Applications, Cross-Cutting, Crew
Rescheduling, Railway, Actor-Agent systems.

1. NS TRAIN DRIVER RESCHEDULING
The railway operations of Netherlands Railways (NS) are based
on an extensive planning process, consisting of three phases:
timetable planning, rolling stock scheduling, and crew scheduling.
The crew scheduling process supplies each train with a train
driver and with sufficient conductors. In the past years, NS has
successfully applied novel Operations Research models to
significantly improve the crew scheduling process for which they

received the Edelman Award 2008 [2]. The current methods and
techniques are very useful for generating the initial daily
schedules, yet their calculation time is multiple hours, making
them unfit for in-time rescheduling purposes. In this paper we
focus on an actor-agent based approach for rescheduling of train
drivers.

After the planning process, the daily plans are carried out in the
real-time operations. Preferably, the plans are carried out exactly
as scheduled. However, in real-time operations plans have to be
updated continuously in order to deal with delays of trains and
larger disruptions of the railway system.

A disruption may be due to an incident, or a breakdown of
infrastructure or rolling stock. On the Dutch rail network (more
than 5,000 daily trains), on average 10 disruptions of a route
occur per day. Delays occur more frequently: On average 450
trains experience one or more delays (> 3 minutes) per day. These
delays lead to removal of on average 10 train services per day.

NS train drivers operate from 29 crew bases. Each day a driver
carries out a number of tasks, which means that he/she operates a
train on a trip from a certain start location and start time to a
certain end location and end time. The trips of the trains are
defined by the timetable. Train drivers can use positioning trips to
travel to the starting location of driving tasks. In addition, standby
tasks are defined and assigned to spare train drivers: these can be
used to resolve rescheduling problems. The tasks of train drivers
have been organized in a number of duties, where each duty
represents the tasks to be carried out by a single driver on a single
day. Each duty starts in a crew base, and a hard constraint is that
the duty ends at the same crew base within a limited period of
time. Also several other constraints must be satisfied by the
duties, such as the presence of a meal break at an appropriate time
and location, and an average driver working time per crew base of
at most 8 hours. Initially in the planning process, duties are
anonymous, which means that the allocation of drivers to duties is
still needed. The latter is handled by the creation of crew rosters,
which describe the sequence of duties that are carried out by the
individual drivers on consecutive days.

The total number of train drivers is about 3000. Each day, about
1000 duties are carried out. Furthermore, at any moment in time,
the number of active duties at that moment is about 300. Due to
removals and delays of trains or rescheduling of the rolling stock
a number of duties of train drivers may become infeasible. An
infeasibility of a duty is due to a time conflict (often caused by
delays) and/or a location conflict (often caused by cancelled train
services). In both cases, a conflict occurs between two
consecutive tasks in the duty. Dispatchers are responsible for
rescheduling tasks among train drivers so that all trains are

Cite as: Abbink, E.J.W., Mobach, D.G.A., Fioole, P.J., Kroon, L.G., van
der Heijden, E.H.T., Wijngaards, N.J.E., Actor-Agent Application for
Train Driver Rescheduling, Proc. of 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Decker, Sichman, Sierra,
and Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp.
XXX-XXX. Copyright © 2009, International Foundation for
Autonomous Agents and Multiagent Systems (www.ifaamas.org). All
rights reserved.

Cite as: Actor-Agent Application for Train Driver Rescheduling, Er-
win J. W. Abbink, David G. A. Mobach, Pieter J. Fioole, Leo G. Kroon,
Eddy H. T. van der Heijden, Niek J. E. Wijngaards, Proc. of 8th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009,
Budapest, Hungary, pp. 513–520
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

514

‘manned’. Dispatchers are organised into four regions, where they
are responsible for rescheduling train drivers who currently reside
in their region. Often dispatchers need to handle task-rescheduling
recursion, which they can handle to a certain extent given
available time and resources. Typically, ca. five minutes are spent
to resolve an inconsistent duty. Frequently, rescheduling problems
are left ‘open ended’ for later resolution by other dispatchers
(often in another region). In larger disruptions some trains simply
cannot be driven as dispatchers are busy rescheduling train-
drivers, causing additional delays for passengers.

The main objectives of the train-driver rescheduling research
system described in this result-oriented paper are for D-CIS Lab
to explore the effectiveness and suitability of a decentralized,
actor-agent based approach to crew rescheduling. The main
objective of NS is to determine whether multi-agent technology is
sufficiently mature to be used in a real-world decision support
system.

2. DESIGN
In this section the main principles underlying the actor-agent
based train-driver rescheduling process are introduced. First, the
applied design paradigm is introduced. After this, the two main
elements of the rescheduling system are described.

2.1 Actor-Agent Paradigm
The actor-agent paradigm [6] explicitly recognizes both human
actors and artificial agents as equivalent team members, each
fulfilling their respective roles in order to reach the team
objectives. The involved agents have quasi cognitive capabilities
that are complementary to (as opposed to mimicking) human
cognition. Actor-agent teams and communities are hybrid
collectives of human experts (“actors”) and agents with
complementary cognitive capabilities which are focussed on a
certain problem and reach a structural and functional complexity
that matches the size and nature of the problem as good as
possible.

The actor-agent based design process provides the system with
several useful global system characteristics. First, the
decentralized approach in which agents use local knowledge,
world views, and interactions, contributes to an open system
design. This openness facilitates easy reconfiguration and/or
adaptation to changing system requirements. Second, combining
humans and agents within the system design allows for integrating
them at their appropriate abstraction levels.

2.2 Train-Driver Rescheduling
The main principle for the train-driver rescheduling application is
to model the solution based on ‘levels of responsibility’ in the
dispatch and rescheduling process:

• human dispatchers at the strategic/management level,

• human train drivers at the level of defining and guarding
their personal interests, and

• their respective agents at the level of implementing the
strategic/management decisions and resolving actual
schedule conflicts.

In our approach driver-agents represent driver-actors in the
rescheduling process. In the event of a disruption all driver-agents
are informed of the disruption details (i.e. removed/delayed train

services). The driver-agent(s) directly affected by a disruption
(i.e., the disrupted train service is associated with a task in the
driver’s schedule) assume the role of team leader. Each team
leader starts a team-configuration process in order to resolve their
respective schedule conflicts.

The main principle underlying the actor-agent based rescheduling
process is that of task-exchange: Each team is extended with
additional team members able to take over tasks from agents
already participating in the team. A driver-agent may be able to
take over tasks without affecting other tasks already present in its
schedule, for example replacing a positioning trip with a task
(unconditional takeover). However, in most cases, a driver-agent
will only be able to take over tasks by replacing existing tasks in
its schedule (conditional takeover). This will then lead to a new
set of conflicting tasks to be taken over by another driver-agent. In
Figure 1, an example of this process is shown: driver-agent B
replaces task U-T with task X-Y from driver-agent A. Driver-
agent C now takes over task U-T from driver-agent B
unconditionally.

Figure 1 : The task takeover process

In case a driver-agent has determined that tasks can be taken over,
a cost-function is applied to determine the costs associated with
the takeover: costs are assigned to various aspects such as the
amount of overtime introduced, replacement of meal breaks, etc.
Subsequently the set of new conflicting tasks of this agent (if any)
is announced to other driver-agents. This leads to a recursive
addition of layers of team members to the team, resulting in a
team consisting of multiple task-exchange configurations,
originating at the team-leader.

Figure 2: Two example task exchange teams consisting of
three agents.

In Figure 2, two team configurations are shown, consisting of
three driver-agents (A, B and C): In the left team, driver-agent A
is team leader, and starts the task-exchange process. The same
driver-agent participates as a team member in its own team, as
well as (in two different configurations) in the team led by driver-
agent B: This feature allows for any driver-agent to participate in
possible task-exchange configurations and thus to facilitate the
solution process to find the best task-exchange configurations for
each team. Driver-agents can withdraw themselves from teams
and team-configurations based on the commitment levels in the

B A

A C

A

C

B
A

5

5 + 10 5 + 15 5 + 20

5 45

A C B X Y U T

OK(CONDITIONAL) OK

Erwin J. W. Abbink, David G. A. Mobach, Pieter J. Fioole, Leo G. Kroon, Eddy H. T. van der Heijden, Niek J. E. Wijngaards • Actor-Agent Application for Train Driver Rescheduling

515

task-exchange protocol, ensuring local and global consistency
when final team-configurations are determined. Details of this
protocol are beyond the scope of this paper.

The team extension process is considered complete when a
configuration of task-exchanges is determined in which all
conflicts are resolved, or any remaining conflicts are sufficiently
shifted forward in time to be resolved at a later point in time (re-
introduced as new conflicts later). At this point, the recursive
team formation process is reversed: Each layer within a team
selects the task-exchange associated with the lowest cost, starting
at the lowest layer. Once all team leaders have determined a final
team configuration, the entire solution is presented to the
dispatcher.

During the team formation process, a number of heuristics are
used, aimed at limiting team extension to promising additional
team members. These heuristics currently include:

• If a task takeover leads to a new conflict in the duty of
the agent taking over the conflict, this conflict must be
positioned later in time. This ensures that conflicts are
always shifted forward in time.

• A scoreboard mechanism is used to inform agents about
the best solution found in a team. Agents use this to
determine if team participation is useful (see section
3.1.2).

• Detecting and aborting similar task-exchange
configurations: many team extensions lead to driver-
agents ending up with similar conflicts which need to be
resolved. When a driver-agent detects that a conflict
resulting from a tak-over is similar to another conflict
this agent is already resolving elsewhere in the same
team, the agent does not pursue this new option.

2.3 Route Calculation
An important element in the rescheduling process described above
is determining whether a driver-agent is able to take part in task-
exchanges. To this end, a model of the timetable is included in the
system design, containing all available train services. This model
is updated with disruption information during run-time to ensure
that it reflects actual available train services. Using this model,
driver-agents can analyze whether a task-exchange is possible by
determining the answers to the following questions:

1. Is the driver able to get to the starting location of the
specified tasks on time, from its current location?

2. Is the driver able to return to his/her own schedule after
completing the specified tasks?

If it is determined that the tasks specified in the task-exchange can
be taken over, the impact of this exchange will have to be
determined: The route calculation process is aimed at preserving
as much of the original train driver’s schedule as possible,
limiting the number of originally scheduled tasks that will become
infeasible due to the exchange.

3. IMPLEMENTATION
The research system is constructed in the real-world domain of
disruptions on the Dutch railroad network as a reliable and
scalable operational system which can run together with the

current systems in place. The work on this research system is
partly subsidized; therefore it is not constructed as a full
production system. As performance is required in the order of
minutes (i.e. comparable to or better than human dispatcher
performance), the following implementation decisions were made:

• The actor-agent based solution process is defined first, after
which an accompanying architecture is designed, on the basis
of which suitable technologies are selected.

• To support the explorative nature of the project, it is
necessary to (always) have a running research system for
testing, debugging and assessment purposes.

• The research system is to be as decentralized as possible.

The research system focuses on rescheduling train driver duties in
real-time over the course of a single day. It is assumed that any
necessary timetable and rolling stock plan modifications to cope
with disruptions have been implemented, and a new rolling stock
plan is in place, to which the driver schedules are to be adapted.
Whenever a solution to disruptions has been accepted, this ‘new’
plan is the basis for the rescheduling in response to new
disruptions (or a change in duration/consequences of an ‘old’
disruption).

For the implementation of the research system, the Cougaar agent
framework [1] is used. Cougaar has initially been developed for
logistics operations and provides a useful Java-based agent
platform with emphasis on stability. Cougaar provides an agent
model based on plugins, allowing for clean separation of
functionality within agents. Furthermore, Cougaar allows for
implementing services, which can be made available to agents
running on a Cougaar node. Cougaar agents use a distributed
blackboard for storing information and communication purposes.

To start the system a bootstrap-agent dynamically instantiates the
driver-agent population and other main agents. This allows for a
flexible startup process, enabling for example dynamic
instantiation of the agents across a multiple-node configuration.

In order to run realistic scenarios, a dataset containing train
activities and driver tasks for a full day has been provided by NS.
The dataset is distilled from multiple data sources, is stored in a
MySQL database, and is made available to agents through a SQL-
Service. The database is to be connected to real-time disruption
information for more continuous experimentation of the research
system.

3.1 Approach
The implementation of the rescheduling system is realized using a
cyclic (re)design, implementation, and evaluation process,
comparable to the well-known rapid prototyping type of approach.
The three main implementation cycles of the research system are
discussed below.

3.1.1 Cycle 1: Demonstrator
A small-scale version of the research system is implemented,
consisting of less than 10 driver-agents and with coarse grained
route calculation capabilities. This version focuses mainly on the
implementation of the driver-agents and the task-exchange
protocol: All driver-agents are instantiated with a driver schedule
and are able to communicate with each other using the
aforementioned blackboard in order to from teams and resolve
conflicts due to disruptions. In this version, all driver-agents are

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

516

designed to act in a de-centralized way; that is, all agents have
access to an internal model of the rail network, in order to
determine possible routes required in the task exchange process.

Cycle 1 has resulted in a demonstrator system at the end of 2007.
Based on this demonstrator, a decision was made to continue
research and development in 2008.

3.1.2 Cycle 2: Scaling up
In the second cycle the number of driver-agents and the route
calculation functionality are scaled up in several steps, resulting in
a version supporting a sizable driver-agent population with full
route calculation functionality.

Evaluation of the demonstrator showed that incorporating a model
of the real-time rail network in every driver-agent introduces a
large amount of computational overhead. This resulted in the
separation of this functionality into a network-agent. On the one
hand, this results in a large amount of communication between
driver-agents and the network-agent. On the other hand, by
keeping a centralized view on the rail network in the system, the
network-agent is able to calculate routes more efficiently (e.g.
request caching), resulting in less (overall) memory usage and
reduced calculation times.

A drawback of this approach is that due to the large amount of
route calculation requests initiated by the driver-agents, a
substantial queue of requests is formed at the introduced network-
agent, impeding the rescheduling process by delaying answers
returned to the driver-agents. Analysis of the requests shows that
ca. 50 % of the requests require detailed rail network calculation.
The remainder can be answered without calculation. For example,
for a request where 200 kilometres have to be covered within 60
minutes it is unnecessary to perform a complicated network-
calculation when it is known that trains cannot travel faster than
130 kilometres per hour on the Dutch rail network.

To take advantage of this property, a route-analyzer-agent is
introduced to interact with driver-agents. The route-analyzer-
agent is supported by several network-agents, and pre-evaluates
all requests to determine if a request can be answered without
involving detailed network calculations. The route-analyzer-agent
is able to do this very efficiently by applying global knowledge of
the network and by using historical knowledge from previous
requests for the same disruption.

Additionally, the network-agents can be distributed to process
requests in parallel, with the route-analyzer-agent acting as the
central point of contact for the driver-agents. The route-analyzer-
agent maintains a priority queue on requests, to further optimize
the usage of the network-agents. The effect is that each network-
agent now has to process less requests, (i.e. only those where
detailed information of the network is required).

In addition to the changes regarding the representation of the rail
network and the calculation of routes, efforts are made to apply
heuristics to make the rescheduling process more efficient by
regulating the size of the task-exchange teams. To this end, a
scoreboard mechanism is introduced: Before joining a driver-
agent team, each driver-agent compares the costs of the task-
exchange configuration it is part of (i.e. the task exchanges
leading up to the task-exchange this driver-agent is evaluating)
against the current ‘best’ (i.e. lowest) costs published on the
scoreboard. The scoreboard mechanism ensures that only solution
alternatives are evaluated which may improve the currently found

solution(s), due to the strictly increasing property of the cost-
function.

At the end of cycle 2, a version of the research system was
realized capable of finding solutions for relatively large
disruptions with a driver-agent population consisting of up to 200
agents within reasonable time.

3.1.3 Cycle 3: Full-scale prototype
In the third cycle a full-scale prototype is developed, ultimately
resulting in an evaluation phase during which the system runs in
parallel with existing rescheduling systems. Important issues
confronted here are the dispatcher-interface to the rescheduling
system and the connection to real-time disruption data streams.

With respect to the dispatcher-interface, again a centralisation
versus decentralisation issue is tackled (yet on smaller scale with
less impact on the overall performance than in cycle 2). The first
dispatcher-agent (as only one was developed in the first phase) is
initially endowed with functionality to monitor and control the
task-exchange team configuration process of the driver-agents.
During subsequent developments, the dispatcher-agent grew in
complexity (including the GUI it presents to a dispatcher) and
additional dispatcher agents were designed. The monitoring and
control functionality was not replicated in each dispatcher agent; a
new agent was developed and charged with this responsibility: the
process-manager-agent.

Currently, cycle 3 is ongoing. A full-driver agent population is
supported. This cycle is expected to be concluded in the first
quarter of 2009.

3.1.4 (De)centralisation
Our pragmatic approach allowed for specific reflection moments
to assess our current progress, including the (emergent) behaviour
of the overall system. The above described evolution of the
architecture shows how an initial, fully decentralised approach
was deliberately changed into an architecture in which two
distributed subsystems can be distinguished:

• The driver-agent rescheduling subsystem, including
dispatcher-agents, process-manager-agent (PMA), and the
driver-agents.

• The route-analyzer subsystem, including the route-analyzer-
agent (RAA) and network-agents (NA).

Figure 3 shows the agents and their relations as implemented in
the current research system:

Figure 3: Current research system architecture.

Driver-agent

Team leader
Team Dispatcher-

agent

PMA

RAA

NA

Erwin J. W. Abbink, David G. A. Mobach, Pieter J. Fioole, Leo G. Kroon, Eddy H. T. van der Heijden, Niek J. E. Wijngaards • Actor-Agent Application for Train Driver Rescheduling

517

3.2 Debugging Tools
The complexity of the train-driver rescheduling process can be
expressed in the large number of involved agents and the
difficulty in assessing the quality of a solution found. During the
implementation of the research system a number of debugging
tools were needed, as the currently available debugging tools were
inadequate.

One important approach was to devise specific tests (e.g., small
disruption scenarios with only three involved driver-agents who
should find an optimal solution in a not so complex way) for each
new increment of the research system.

Another tool was needed to assess the quality of solutions found
by the research system. For this purpose, the dispatcher-agent
provides a GUI which represents train driver duties in the same
manner as is currently used by dispatchers1. In addition, the
human dispatcher can specify a disruption scenario via this GUI,
and configure the solution process parameters (e.g. weights of the
cost function elements, scoreboard settings). The results of the
team-configuration process are also presented to the dispatcher
using the GUI (see Figure 4).

Most agent frameworks do not provide sophisticated debugging
tools at the level of multiple agents. Although communication
logs are of interest to understand one agent’s functionality, the
more emergent effects of multiple interacting (and even
cooperating) agents need to be analyzed at a higher level of
abstraction.

Figure 4: Dispatcher GUI displaying train driver duties.

For this purpose, a visualization tool is developed to gain insight
in the dynamics of the team-formation process. Based on event
logs of the driver-agents a graphical view of the interactions
between the driver-agents over time is visualized2. Figure 5 shows
a snapshot of a replay of the team-formation process: Each cluster
of nodes represents a team. Within these teams, the nodes
represent driver-agents taking part in the task exchange process:

1 These representations are e.g. used in the CREWS application

(www.siscog.pt) and in the Resource Manager system by
FUNKWERK.

2 Based on the Prefuse Information Visualization Toolkit
(http://prefuse.org/)

Driver-agents acting as team leaders are depicted using a
rectangle, team members using circles. The team-formation
visualization tool has proven its value in debugging of the team-
formation process and quality assessment of proposed solutions.
In addition, this visualization tool facilitates explaining our
approach to train driver rescheduling to a wider audience.

4. INITIAL RESULTS
This section provides an overview of our current3 findings. The
current version (October 2008) of the system is able to find
solutions for relatively large disruptions, using sizeable driver-
agent populations.

Figure 5: Team-formation visualization tool.

To illustrate this, results of two relatively complex example
scenarios are presented. The first scenario consists of a complete
blockage between stations Groningen and Zwolle from 16:00 to
17:00. The second scenario consists of a complete blockage at
station Vught. Figure 6 provides a simplified overview of the
Dutch railway network, in which the locations of the disruption
scenarios are indicated. Solid lines denote the network
responsibilities of NS, dotted lines are handled by other operators.
The results described below are compared to the research system
itself instead of compared to results of other systems: work is in
progress to compare results of actual disruption scenarios with
real world dispatcher responses. The acceptance and use of the
research system by human dispatchers will be studied at the end of
development cycle 3.

The results discussed in this section are qualified by the number
of driver-agents involved in the final solution, as well as the
number of spare drivers and additional overtime introduced. The
aim of the result analysis in the two scenarios is to assess
scalability and behavior of the research system. Interestingly
enough, not only the number of driver-agents is of importance to
assess scalability, but also whether spare driver-agents are
involved. The cost function adds extra cost for the use of spare
driver-agents; the intent is to avoid making spare driver capacity
too ‘cheap’. In addition, the cost function heavily depends on

3 The findings presented in this section are based on the early Q4

2008 version of the research system. The current version (Q1
2009) contains a number of improvements in performance and
solution quality.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

518

overtime by involved driver-agents, which is shown for the final
solutions found.

The number of messages exchanged between agents provides an
indication of the ‘performance’ of the research system. The route-
analyzer-agent together with the network-agents comprise the
computationally most expensive part of the research system; the
number of routes calculated provides an indication of the effort
spent. In addition, calculation times are provided: these times are
indicative only (although they do indicate that the research system
already outperforms a single human dispatcher), as the research
system has not been (re-)engineered as a real-time operational
system.

Figure 6: Simplified Dutch railway network and location of
disruption scenarios.

4.1 Scenario 1: Blockage Groningen-Zwolle
For scenario 1 the number of cancelled train services due to the
blockage is 11, which leads to 11 driver-agents to act as team-
leaders. Table 1 shows the results for the first scenario of various
runs with different driver-agent populations.

In run 1 all 59 selected driver-agents are located near the
disruption at the time of the disruption: in this case a solution can
be found. This solution could be improved by including a spare
driver, as is shown in run 2. In run 3 there are 28 additional
driver-agents included that are located near the disruption, but
after the actual disruption itself is already solved. This also
improves the solution found, as driver-agents now have the
possibility to exchange tasks forward in time until later in the
evening, when more free capacity is available.

In this case adding extra spare drivers does not contribute to a
better solution. It does, however, help to find the same solution
more quickly, as is shown in run 4. This can be explained by the
scoreboard mechanism: Even though the spare driver is not
chosen in the final solution, these driver-agents publish a value on
the scoreboard early on in the process, aiding in the elimination of
many more costly solutions at an early stage.

In run 5, 48 driver-agents are added which are located relatively
far from the disruption at the time of the disruption. None of these
added agents contribute to an actual solution. This is detected
quickly by the system: The final solution remains the same and
the time needed to find the solution increases only marginally.

Table 1: Results scenario 1.

R
un

dr

iv
er

-a
ge

nt
s

(s
pa

re
 d

ri
ve

rs
)

T
ot

al
 #

 f
in

al

te
am

 m
em

be
rs

O
ve

rt
im

e
(m

in
ut

es
)

sp

ar
e

dr
iv

er
s

in
 f

in
al

 s
ol

ut
io

n

A
ve

ra
ge

ca

lc
ul

at
io

n
ti

m
e

pe

r
te

am
-l

ea
de

r
(s

ec
on

ds
)4

1 59 no spare 21 237 0 0:32

2 59 +1 spare 14 0 1 0:06

3 87 no spare 14 0 0 0:08

4 87 +4 spare 14 0 0 0:07

5 135 +4 spare 14 0 0 0:10

6 183 +4 spare 14 0 0 0:18

In run 6, 49 driver-agents are added that are located relatively
close to the disruption. These agents do not contribute to an
improvement of the final solution but did participate in the team-
formation process. Therefore the calculation time for this run
increased substantially as opposed to the previous runs.

Table 2: Communication statistics for scenario 1.

R
un

m

es
sa

ge
s

 r
ou

te
-

an
al

yz
er

-a
ge

nt

ro

ut
es

 c
al

cu
la

te
d

by
 n

et
w

or
k-

ag
en

t

of

 m
es

sa
ge

s
se

nt

1 41.314 13.920 398.000

2 4.826 1.944 52.250

3 6.943 1.952 73.500

4 4.893 2.033 61.500

5 8.465 2.390 108.750

6 14.182 4.171 167.000

As shown in Table 2, a large amount of communication between
the agents was needed to find the final solution for run 1. Because
the final solution is not a very good solution in terms of overtime
and number of agents participating, a large number of alternatives
have to be considered during the negotiating process in order to
conclude that a better solution does not exist. In run 2 where the
final solution has no overtime, a large number of alternatives
which were explored in run 1 can now be eliminated beforehand
due to the score-board mechanism. This leads to much less
communication. In runs 3, 4 and 5 there are more agents in the
system, which leads to more communication; in these cases most
of the extra requests for routes from the driver-agents can be

4 Calculation times indicative only; System configuration: Intel

Pentium D 3.4 Ghz. 2.0 GB RAM

Erwin J. W. Abbink, David G. A. Mobach, Pieter J. Fioole, Leo G. Kroon, Eddy H. T. van der Heijden, Niek J. E. Wijngaards • Actor-Agent Application for Train Driver Rescheduling

519

handled by the route-analyzer-agent without sending them to the
network-agents. Because of this the calculation time increases
only marginally. Only in run 6 the network-agent has to process
almost twice as many requests, which leads to the increase in
calculation time.

4.2 Scenario 2: Blockage Vught station
For scenario 2 the number of cancelled train services due to the
blockage is 14. Table 3 shows the results for the first scenario of
various runs with different driver-agent populations.

Table 3: Results for scenario 2.

In the first run only the driver-agents who are located close to the
disruption at the time of the disruption were included. These
agents were able to find a solution for the disruption, but they
needed to introduce a lot of overtime. After including two spare
drivers in run 2 the system was able to find a better solution. In
run 3, more agents that are located relatively close to the
disruption were included. This resulted in a more acceptable
solution, but also resulted in more than twice the calculation time.
Including all available spare drivers in the neighborhood of the
disruption improved this solution further. In this case 4 spare
drivers were actually used in the final solution, the others helped
to find the solution more quickly.

In run 5, 51 driver-agents are added that are located further away
from the disruption at the time of the disruption. In this case there
are 87 minutes of overtime in the final solution where there was
no overtime in the solution of run 4. This can be explained by the
fact that the solution found in run 5 contains one less spare driver-
agent in the final solution.

Table 4 shows that when a relatively good solution can be found
early in the negotiation process, the score-board mechanism is
able to reduce the total amount of communication needed. In run
4, the total number of requests from driver-agents to the route
analyzer-agents decreased with almost 30% and the total number
of messages decreased by more then 20% compared to run 3.

This can be explained by the elimination of a large number of
alternatives by the score-board mechanism early in the negotiation
process. The number of requests processed by the network-agent
increased slightly, because additionally the routes for the spare
drivers had to be calculated. In run 5, there was more
communication needed than in the fourth run, but still less than in
the third run.

As shown in the results discussed above, the score-board
mechanism helps to find good solutions quickly, in cases where a
good solution exists. In cases where only solutions with high costs
exists (i.e. complex solutions with many task-exchanges) the
scoreboard is not seeded with relatively low-cost values leading to
the evaluation of almost all alternatives in the search-space, before
concluding that the best solution has very high costs. A possible
approach currently explored to solve this problem is to allow
partial solutions of a conflict to be published on the scoreboard.
A partial solution means that a conflict is sufficiently moved
forward in time to be solved at a later point in time.

Table 4: Communication statistics for scenario 2.

R
un

m

es
sa

ge
s

 r
ou

te
-

an
al

yz
er

-a
ge

nt

ro

ut
es

 c
al

cu
la

te
d

by
 n

et
w

or
k-

ag
en

t

of

 m
es

sa
ge

s
se

nt

1 20.190 9.246 190.841

2 20.056 8.260 187.033

3 46.012 10.136 431.528

4 33.741 11.421 341.316

5 37.551 12.561 388.892

5. DISCUSSION
The train-driver rescheduling research system is a real-world
application of actor-agent systems. Since summer 2007, about
nine man years of research & development have been successfully
invested. The performance of the current system (ca. 200 driver-
agents) is expected to grow unto the full 1000+ driver-agents in
Q1 2009. The expected performance in the context of (usually)
300 active train drivers looks promising given the current
developments. The current calculation times indicate that the
research system easily outperforms a human dispatcher in the
quantity and thoroughness of the solutions found. One possible
use of the research system is to study the combination of
rescheduling properties of initial daily crew schedules given
specific disruptions and rescheduling parameters. This may lead
to new insights in the role and use of spare train-drivers as well as
the amount of ‘free time’ required in the train driver duties.

5.1 Related work
Traditionally, crew scheduling problems are approached using
Operations Research techniques. Real-time crew rescheduling
however is a relatively new area of research. To our knowledge,
no research has been published on agent-based crew rescheduling
applications in the railway domain. Shibghatullah et al. [4]
propose an agent-based framework for bus crew scheduling
including crew-reassignment. The paper provides an overview of
the potential advantages of agent-based approaches (e.g.,
modelling individual preferences, more suited for partial, on-
demand rescheduling), but lacks further details of the proposed
framework. In [5], Tranvouez et al. present a multi-agent based
approach to disruption management in the supply chain domain.
A distinction is made between partial and complete rescheduling,
as well as periodic and event driver rescheduling. It is argued that
partial, event driven rescheduling appears to increase schedule

R
un

dr

iv
er

-a
ge

nt
s

(s
pa

re
 d

ri
ve

rs
)

T
ot

al
 #

 t
ea

m

m
em

be
rs

O
ve

rt
im

e
(m

in
ut

es
)

sp

ar
e-

dr
iv

er
s

in
 f

in
al

 s
ol

ut
io

n

A
ve

ra
ge

ca

lc
ul

at
io

n
ti

m
e

pe

r
te

am
-l

ea
de

r
(s

ec
on

ds
)

1 33 no spare 20 501 0 0:19

2 33 +2 spare 19 386 2 0:15

3 106 +2 spare 28 121 2 0:39

4 106 +10 spare 26 0 4 0:37

5 157 +10 spare 26 87 3 0:44

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

520

stability. Our rescheduling approach can also be classified as
partial, event-driven rescheduling. Schedule stability is also an
important and desirable characteristic in the railway crew
rescheduling domain, given the fact that initial crew schedules are
already optimized for efficiency, and changes should be
minimized. Tranvouez et al. further describe a BDI architecture,
for its potential to design complex decision making processes and
to represent rich domain expert knowledge.

Mao et al. [3] recognize the need for short-term operational
planning and scheduling methods in the domain of airport
resource scheduling, and present an agent-based approach based
on two coordination mechanisms: decommitment penalties and a
Vickrey auction mechanism. The coordination approach used in
this paper is based on a combination of similar mechanisms: The
driver-agent interaction protocol has auction-like properties
(agents report costs (i.e. bid) for taking over tasks), and
decommitment penalties are determined based on increasing
commitment levels. In literature, coordination approaches based
on negotiation concepts are often divided in cooperative and non-
cooperative (self-interested) approaches. Although driver-agents
in our model can in some respects be considered as self-interested
agents (driver preferences are included in the agent’s cost
function), the agents cooperate to achieve the global goal of
resolving disruptions, and agents do not engage in direct
competition.

5.2 Lessons Learned
A number of lessons learned can be distilled at this point in the
project:

• Co-development is crucial. The close cooperation between
NS and D-CIS Lab enabled the transfer of domain
knowledge as well as actor-agent knowledge to the mutual
benefit of both parties and the overall success of the research
system.

• Real-world data is difficult. More effort than expected was
invested in understanding the problem domain and distilling
useful parts of real-world data (incl. incompleteness,
inaccuracy and sometimes unavailability).

• Re-design is not evil. During the development of the research
system progressive insight led to re-design of important parts
of the driver-agents and the route-analyzer-agent. Although
this effort seemed distracting, the overall research system’s
quality improved substantially.

• Decentralization is not a silver bullet. A careful balance has
to be made between decentralizing task-exchange
functionality from centralizing route analysis and calculation
to boost performance without violating our actor-agent
principles.

• Multi-agent debugging tools are a necessity. Message
analyzers are not enough to debug a full fledged multi-agent
system; an additional visualization tool was created to debug
the (emergent) team-formation process.

The results of this project encourage us to continue our work on
agent-based rescheduling in real-world domains. Future work
entails using the research system as a platform for additional
performance analysis and testing of techniques, cost-functions as
well as agent platforms.

6. ACKNOWLEDGMENTS
The authors express their gratitude to NS and Cor Baars (DNV /
Cibit) for starting this project. The following D-CIS Lab
colleagues provided valuable contributions: Hilbrandt van Boven,
Pascal Hoetmer, Michel Oey, Reinier Timmer, Louis Oudhuis,
Martijn Broos, Sorin Iacob, Thomas Hood, and Kees
Nieuwenhuis. The research reported here is part of the Interactive
Collaborative Information Systems (ICIS) project
(www.icis.decis.nl), supported by the Dutch Ministry of
Economic Affairs, grant nr: BSIK03024. The ICIS project is
hosted by the D-CIS Lab (www.decis.nl), the open research
partnership of Thales Nederland, the Delft University of
Technology, the University of Amsterdam and the Netherlands
Organisation for Applied Scientific Research (TNO).

7. REFERENCES
[1] Helsinger, A., Thome, M., and Wright, T. (2004), Cougaar:

A Scalable, Distributed Multi-agent Architecture. In: Proc.
of the Int. Conf. on Systems, Man and Cybernetics,
The Netherlands.

[2] Kroon, L., Huisman, D., Abbink, E., Fioole, P.J., Fischetti,
M., Maróti, G., Schrijver, L., Steenbeek, A., Ybema, R.
(2008). The New Dutch Timetable: The OR Revolution.
In: Interfaces (to appear).

[3] Mao, X., ter Mors, A., Roos, and N., Witteveen, C. (2007),
Coordinating Competitive Agents in Dynamic Airport
Resource Scheduling. In P. Petta, J. P. Mueller, M. Klusch,
M. Georgeff (Eds.). Proc. of the 5th German Conf. on
Multiagent System Technologies, LNAI, Springer Verlag,
vol. 4687, pp. 133-144.

[4] Shibghatullah, A.S., Eldabi, T., Rzevski, G. (2006), A
Framework for Crew Scheduling Management System Using
Multi-Agents System. In: 28th Int. Conf. on Information
Technology Interfaces (ITI 2006), Cavtat, Croatia.

[5] Tranvouez, E., Ferrarini, A. (2006), MultiAgent Modelling
of Cooperative Disruption Management in Supply Chains.
In: Int. Conf. on Service Systems and Service Management
(2006), Troyes, pp. 853-858.

[6] Wijngaards, N., Kempen, M., Smit, A., and Nieuwenhuis, K.
(2006), Towards Sustained Team Effectiveness. In:
Lindemann, G., et al. (Eds.), Selected revised papers from
the workshops on Norms and Institutions for Regulated
Multi-Agent Systems (ANIREM) and Organizations and
Organization Oriented Programming at AAMAS’05, LNCS,
Springer Verlag, vol. 3913, pp. 33-45.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

